Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Recursive Least Squares Estimation for Multivariable Systems
This paper discusses parameter estimation problems of the multivariable systems described by input–output difference equations. We decompose a multivariable system to several subsystems according to the number of the outputs. Based on the maximum likelihood principle, a maximum likelihood-based recursive least squares algorithm is derived to estimate the parameters of each subsystem. Finally, t...
متن کاملRecursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises
Many control algorithms are based on the mathematical models of dynamic systems. System identification is used to determine the structures and parameters of dynamic systems. Some identification algorithms (e.g., the least squares algorithm) can be applied to estimate the parameters of linear regressive systems or linear-parameter systems with white noise disturbances. This paper derives two rec...
متن کاملLeast squares methods in maximum likelihood problems
It is well known that the GaussNewton algorithm for solving nonlinear least squares problems is a special case of the scoring algorithm for maximizing log likelihoods. What has received less attention is that the computation of the current correction in the scoring algorithm in both its line search and trust region forms can be cast as a linear least squares problem. This is an important observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2012
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2011.08.023